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A system which can generate multiple signals such that each signal can have different
quality states is modelled. A measure of the effectiveness of the system as a function of
the status of its components is developed. Assuming only that the probability distribution
of the status of each component is known, bounds on the probabzlzty distribution of the
system’s measure of effectiveness are developed.

l. Introduction

In the modelling of systems of many components to study
their reliability, the usual assumption has been that each
component can be in one of two states, either operating or
failed, and that the system itself exhibits the same behavior. In
many cases, and in particular in the case of NASA’s Deep
Space Network (DSN) these assumptions are too simplistic.
For example, in the frequency and timing system (FTS) of a
Deep Space Station (DSS) many different time signals and
frequency standards are output, and it is quite possible that
some of these may cease to be generated, due to equipment
faiture for example, while others are still available. In this
situation, one cannot state that the system is failed or that it is
operating, but rather that it is operating in a degraded mode,
providing only some of the services it is intended to provide.
One of the objectives of this article is to develop methodology
to quantify the performance of systems with this charac-
teristic.

A second complication is introduced by the fact that each
of the outputs of the system may be available in different
qualities as the system degrades and is repaired. For example
in the FTS, the signals can originate from hydrogen masers,
cesium standards, rubidium standards or crystal oscillators,
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" and the quality of each signal (accuracy and stability) will

depend on which type of source is being used to generate it.
Furthermore, as each signal is processed by the other compo-
nents of the system, it may also be degraded in quality,
depending on the state of the component. These varying
qualities must be considered in the description of the system,
since they influence the possible uses of the system’s output.
This article presents a method for the characterization of a
system which can produce multiple outputs at multiple quality
levels. The outputs are produced and processed by the compo-
nents of the system.

We will assume that the components may be in different
states and that these states can be assigned numerical values,
with O representing a failed component. We will also assume
that the state is a measure of the quality of the signal that the
component can put out, if a signal of that quality or better is
available as input to the component, Thus, we do not allow for
a component to produce an output of better quality than its
input.

In Section II we present a method of describing the quality
of a single output as a function of the state of the compo-
nents. Normally we are interested in predicting the system’s




future behavior, and the state of the components will not be
known with certainty. We thus proceed to assume that the
states of the components are not precisely determined, but
that we can give a probability distribution for the state of each
component and determine from these distributions the proba-
bility distribution of the quality level of the output. Since the
computations involved are easily seen to be quite elaborate, we
.also present upper and lower bounds on the distribution of the
state of the output, which are easier to compute.

In Section ITI we extend these results to the case of multi-
ple outputs by considering the different activities (e.g., telem-
etry, navigation, radio science) that require the signals out-
put by the system as well as the minimal quality of each signal
that each of these activities requires. It is thus possible to
determine, from the state of the components, whether all the
signals required by an activity are available at the necessary
quality level so that the activity may be carried out. By
assigning a value to each activity, it is then possible to arrive at
an overall measure of the operation of the system as a whole.
We develop bounds on the probability that each activity can
be carried out, since the exact computation in many cases is
not practical.

In Section IV we present an application of the method to a
portion of the FTS.

Il. Analysis of a Single Output Multistate
System

For a single signal, we define a path set as a set of compo-
nents whose functioning will ensure that the signal is being
produced. A minimal path set is a path that does not contain
other paths. Thus, if all components are failed except those on
a minimal path, the signal will be produced, but if any one of
the minimal path components subsequently fails, the signal
will cease to be produced.

We also define a cut set as a set of components whose
failure causes the signal to cease to be produced, even if all
other components are functioning. A minimal cut set is a cut
set that does not contain other cut sets. Thus, if all compo-
nents are functioning except those on a minimal cut set, the
signal will not be produced, but repair of a single component
of the minimal cut will cause the signal to be produced again.

We remark that the concepts of path and cut are of a binary
nature and do not depend on the actual states of the compo-
nents, except for the failed not failed distinction. We will
initially consider only systems in which components can be in
one of two states, and later extend our results to the more
general case of multistate components. Corresponding to this
binary conception, we may define the indicator variables x; as

1 if component { is functioning

0 if component { is not functioning
and the signal indicator variable ¢ by

1 if the signal is being produced

0 if the signal is not being produced

Clearly ¢ depends only on the values of x;, i=1,2...n,
where n is the number of components that generate the signal.
We thus write ¢ = ¢(x;, X5, ..., X,) = #(x). As discussed in
Barlow and Proschan (Ref. 1), if &,,i= 1,2,...,p are the
min path sets, and 2%, i=1,2, ...k are the min cut sets, then
we can write

¢ (x)

ﬁ 1~H(1—xj) = min {maxxi}

i=1 je:yri 1<i<k ek,

—

max minxi
1<i<p jeg'l.

As discussed in Ref, 1, these expressions can be expanded into
multilinear expressions. Furthermore since the x; are binary
variables, x; = x; for all n, so that no powers of the x; appear.

If we now assume that components behave randomly, and
let x; be the state of component i, then ¢ is also a random
variable. Under the assumption that the x; are independent,
and letting p; = P[x; = 1] = E,, we can show that

PleG) = 1] = E¢(x)

is a function only of the p,. This is known as the reliability of
the signal and we write

E¢(JC) =h(p1>p25 s >pn)Eh(£)

As explained in Ref. 1, h@ can be obtained from the struc-
ture function by substituting for each x; in the multilinear
expansion of ¢(£) the corresponding p;.

We remark that in the actual expansion of the structure ¢
and the reliability 4, not all components x; or p; will be
present, since some components of the system will not be
relevant to the production of the signal. We thus distinguish
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between relevant and irrelevant components for the produc-
tion of the signal.

We now proceed to extend the above results to the case
where each component can be in any one of many states.
Assume that the state of component j can be represented by a
variable z;. If we consider a minimal path of the signal, then,
since all components in that path are necessary to process it,
the best signal that path can produce is

min z
]

jeg’i

Also, since any of the min paths is sufficient to generate the
signal, the value of the actual signal produced will be

,2,) = max min z,
1<i<p | je7,

Similarly, since the signal must go through at least one compo-
nent in a minimal cut set, the value of that cut set will be

\Ilp (zl,zz,...

max Zi
e,

and since the signal must traverse all minimal cut sets, we are
led to the alternative

‘I’k(21,22,---,2,,) = min minzj}

1<isk | ja;

It is of course evident that if we restrict z; to binary variables,
we obtain precisely the structure ¢ that details whether the
signal is being produced or not.

A property of our definitions which will allow us to use the
power of the binary system theory of Ref. 1 is the following.
Consider a binary structure ¢ with min path sets &, i=1,
2,...,p,and min cut 'setjs-e%’i,i= 1,2,...,%. Assume com-
ponent j operates for time #; and then fails. Then the time
until the structure fails is (See Ref. 1, pp. 12).

= max mintl.
1<i<p je,.u'/l.

By comparing this expression with our definition of ¥, and
V., we conclude that they are both equal, and furthermore
establish the following:

T = min {maxtj}

1<i<k ie.’%i
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v Theorem

The state of the system is equal to the life of a binary
system with the same min paths and min cuts, and whose
component lifetimes are equal to the state of the individual
components.

We will call the binary structure of the theorem the equiva-
lent binary structure. With this property, most of the results
known for binary structures extend easily to this more general
representation, In particular all results on modular decomposi-
tions are valid. We can now assign probabilities to the states of
the components, and obtain probabilistic results for the state
of the system, If Fy(z)= P [Z, > z] then F(z) =P [¥(2)>z]
is equal to the probability that the life of the equivalent
binary structure exceeds z is thus (Ref, 1) '

FG) = AL F, @),....F,@)]

From this observation we immediately obtain versions of the
IFRA and NBU closure theorems.

A distribution F(x) = 1 - F(x) is called increasing failure
rate average (IFRA) if it has the property that -1/x log
[1 - F(x)] is increasing in x. See Ref. 1, Section 4.2 for
explanation and interpretation. The IFRA closure theorem
states that a system whose components have IFRA distribu-
tions has itself an IFRA distribution (Ref. 1, Theorem 4.2.6).

If - %log Fz.(z) is increasing in z for each i, then

- ;llog F(z) is increasing in z.

A distribution is called new better than used (NBU) if it has
the property that for all x; and x,

1- F(x, +x2) <[1- F(xl)] [1- F(xz)] .

See Ref 1, Section 6.2 for an explanation and interpretation.
The NBU closure theorem is analogous to the IFRA closure

. theorem (Ref. 1, Theorem 6.5.1).

z,,then

IfF,(z, +2,) <F,(z) F(z,) foreach i forall z,, z,,

F(z, +2,)<F(z,) F(z,) forallz andz,.

Another result that follows immediately is the reliability
bounds of Ref. 1.




Theoremn

Let p; = P (Z; > z) for a fixed z. Then if the components
are independent

ﬁ 1- I'[(1-'p,.)] <F—(z)<l—ﬁ (1 - ]'[p,.)

=1 jek; i=1 je,

and

max {Hpi} <F(z)< min {l—n(l—p’.)}

i<isp ]'e.?;. 1<i<k /e.ﬂi

Neither bound dominates so that in practice it is necessary to

compute both pairs and select the best lower and upper
bounds. Using modular decompositions, we can improve the
bounds, as done in Ref. 1, pp. 39-44,

The concepts introduced thus far are stationary, and we
will find it convenient to introduce time-varying states. If Z(¢)
is the state of component i at time ¢, we define

F,(2) = PIZ, (0 >1]

Thus for fixed ¢, 17, (1, z) is the distribution of the state at time
t. If T, is the first time at which the state of component 7 goes
below z, then

P(T,>1)=P[Z(H>z] = F,(t,2)

Thus for fixed z, F‘l (¢, z) is the distribution of the time until
the components state first goes below z.

Therefore, for any ¢ and z if the components are inde-
pendent

F(t,2) = 1 [F, (2., F, (1,2)]

and, for any fixed z, we have IFRA and NBU closure theorems
for the passage times.

lll. Multiple Signals

A possible description of the state of a multisignal system
would be the vector whose components describe the state of
each signal. However, this has various drawbacks. The moré
serious one is of course that it becomes difficuit to state

whether a particular state of the system is in some sense better
or worse than another state. Furthermore, the number of
possible states grows explosively with the number of signals,
thereby obscuring the benefits of any analysis. The solution
we have chosen to this dilemma is to consider the use to which
the signals are put. We will assume that the outputs of the
system are input to several users, which in the case of the DSN
will be thought of as activities (e.g., telemetry, radio science,
etc.). Bach activity is assumed to require all of the signals, with
a specified minimal quality level for each. Let

m,, = minimal acceptable level of signal i required
by activity j

It should be noted that we accept the possibility that iy =0,
which allows for the fact that signal { may actually not be
required by activity j. Our formulation is preferable only
because it leads to simpler notation. Note that this transforms
each activity into a binary variable once more. Furthermore,
we attach a value v, to activity j, and we then measure the
performance level of the system by the sum of the values of all
the activities that can be performed. Thus, for activity j, we
define, as an indicator of whether or not we are receiving the
value of the activity, the binary random variable

Y., =

{1 if\I'l.(zl,zz...zn)>mi/fori=1,2,...,m
]

0  otherwise

where n is the number of components that produce the signals,
and m is the number of signals. The application of the proba-
bilistic notions to the experiment is complicated by the fact
that the signals are not independent

P(Y_/=1) = P[\I/i(g)>mil.,i=1,2,...,m]

and since all the I, are functions of the random vector Z, they
are not independent. We thus are forced to either consider
their interdependence, or to develop bounds on the probabil-
ities that are relatively simple to compute.

The computation of bounds is relatively straightforward.

Theorem

m m

[‘[ P(\Ifl.>mij)<P(Yj=1)<l—n [1-P(¥, >my]
i=1 =1

P(Y/ =1)<minP(¥,> ml.i)

99




Proof
Letting
1 ify, (9 = my
T, =
0 otherwise
We have that

1oifr,=1,i=1,2,...,m

0 otherwise

Hence Y is a series system of the 7;. Note that the 7, are not
independent since they all depend on the same set of variables.
However, since they are non-decreasing functions of the inde-
pendent random variables Z, they exhibit a special form of
dependence known as association (see Ref. 1, Section 2.2 for
definition and properties). Therefore, the reliability bounds
for a series system of associated components (Ref. 1, Section
2.3) apply, yielding

]"nlp(r,.= 1)<P(Yj=1)<1_ﬁ [1-P(r,=1)]
i=1 =1

which is the desired result.

The advantage of upper and lower bounds lies in that they
provide an estimate of the error of each bound. We can use
these approximations to compute bounds on the expectations
of the value of all the activities. Since activity f is worth V] we
obtain

1 !
DA NI ALY

and this can be bounded above and below by the bounds on
each individual term.

The computation of the exact reliability can, at least in
principle, be carried out along the following lines: Let ¢,(x)
be the binary structure of signal 7. Let ~

o¢x) = [T,
i=1
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be the structure of all activities (the activity can be performed
if all signals are present). Although the product need only be
taken over those signals that are actually used in activity j, the
use of all signals will cause no problems once the minimal
levels are introduced.

Corresponding to the structure ¢ defined above we have the
reliability function

h(P)=Plp(x)=1] =n(@,...,P)

obtained as beforeby replacing x; by p; in the expansion of ¢.
We now let

Mkj = m?x {ml.].}

(where the maximization is carried out only over those signals
i in which component % is relevant.)

Therefore M, ; is the minimal level of operation of component
k that is compatible with the operation of activity j. It follows
that the probability that activity j can be carried out is

PI¥@) = 1]

= h[PZ,>M, ), PZ,>M,),... .2, >M,)]
1j 7 7

It should be evident that, even if the determination of ¢, (?f,)
could be carried out by analyzing every signal (and this is
probably feasible from a practical point of view), the algebraic
work necessary to obtain ¢ (x) is probably beyond the realm
of practicality due to the exponential growth in the number of
terms (e.g., if each of 10 signals has 5 terms, a conservative
estimate, we would have 510 ~ 9,75 million terms in the
expansion of ¢. This is what makes the possibility of using
bounds so attractive. On the other hand, an alternative worth
exploring is that of using symbol manipulation computer pro-
grams to expand and reduce these expressions, and this should
be examined in the future. '

IV. An Example

As an example, we will consider the generation of the
10.1-MHz frequency standard by the DSN. The block diagram
(Fig. 1) is self-explanatory and is the basis of our analysis.
From the block diagram we can easily deduce a logic diagram
which specifies the binary structure of the system under con-
sideration (see Fig.2). By examining this diagram we can list
the minimal path sets and minimal cut sets.



Minimal paths Minimal cuts
1,6,7,10 1,3,8
2,3,6,7,10 1,3,12
3,4,6,7,10 1,2,4,5
3,5,6,7,10 1,3,4,5
4,6,7,8,10,12 7
5,6,7,8,10,12 10

6

Note that from the diagram, components 4 and 5 always
appear in a parallel configuration and can thus be treated asa
module, i.e., as a single larger component. Similarly, compo-
nents 8 and 12 are in series and so are 6, 7 and 10.

Thus, if we let

X, = X, +X,- XX,
Xg = XgX1a
Xo = XX0X10

we can rewrite the logic diagram as seen in Fig. 3. We obtain
the following minimal path and minimal cuts

Minimal paths Minimal cuts

1,C 1,3,B
2,3,C 1,2,4
3,4,C 1,3,4
B,A,C c

-

Hl

Therefore, the structure function is (based on the minimal
paths)

q>(£{) =1-(1- XlXc)(l - X2X3XC)
- X3XAXC)(1 - XAXBXC)
or, based on the minimal cut sets,

¢ = [1-A-X)A-X)(A-X)] [1-(1-X,)

(1-X,) (1- X1 [1-(1- X)) (1- ) (1-X )] X,

Either expression can be reduced, after some painful algebra to
#X) = X, X+ X, X X+ XX X+ X, X X

~ (XXX X X XX XX X XX

XXX, X+ XX, X X,)

+(X X, X,X X,

277374 C+X1X3XAXBXC)

We emphasize that, even though this expression is easy to
handle, we have not presented the algebra involved in obtain-
ing it. Furthermore, the equivalent expression for a more
complex system would be far harder both to obtain and to
use. Therefore, the bounds developed will prove useful.

We now assume there are 5 qualities of signals:

No signal

Crystal standard quality
Rubidium standard quality
Cesium standard quality
Hydrogen maser standard quality

O o1 O

These numeric values were chosen as the logarithm of the Q
value of typical devices of each kind. Any other assignment
could, of course, be selected.

We will also assume known for some point in time #, values
of the probabilities that different components are performing

Component 1: P[Z=0] =0.40 P[Z=9]=0.60
Component 2: P[Z =0] =0.15 P[Z=8] =0.85
Component 3: P[Z=0] =0.05 P[Z=6] =0.95
Components 4 and 5: P[Z=0] =0.10 P[Z="7] =0.90
Components 6-7-10: P[Z=0] =0.01 P[Z=6] =0.02
P[Z=17] =0.02 P[Z=8] =0.05

Pz =‘9] =0.90
Components 8-12:. P[Z=0] = 0.01 P[Z=17]=0.99

We can now compute

P, =09+09- 0.9%2 =0.99
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and then proceed to compute the distribution of the state of
the system. If we wanted P [¥( Z) > 7] we would use

Pl = 0.6 PA = (0.99

P2 = 0.85 PB = 0.99

P3 =0 P, =097
to obtain

P¥(Z)>7] = 09623
The reliability lower bounds are
[1-Q-P)(Q-P,) 1-PR)] [1-(1-P) (1-P,) (1-P )]
[1- (1-P)) (1-P,) (1-P,)] P, = 09617
and

PgP, P} = 09507

max {P1Pc’ P2P3PC, P3P g PC,

Thus a lower bound is 0.9617

The reliability upper bounds are
1-(1-PP)(1-P,PP)(1-P,PP.)

(1- P,P.P.) = 0.9794
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and
min [1 - (1-P,) (1-P,) (1-Pp), 1 - (1-P,) (1-P,) (1-P,),
1-(1-P)) (1-P;) (1-P,), P,] = 0.9700
Thus we obtain bounds of
0.9617 <P [¥(Z)=>T] <0.9700

We can similarly compute bounds for the other states of the
system

0.9890 <P [¥(Z) > 6] < 0.9900 (true value 0.9890)
09617 <P [¥(2) > 7] <0.9700 (true value 0.9623)
0.5700 <P [¥(Z) >8] < 0.5700 (true value 0.5700)
0.5400 <P [¥(Z) > 9] <0.5400 (true value 0.5400)

From these bounds it is possible to compute bounds on
information such as the expected state of the system (8.06 <
E¥(Z)<8.07).

V. Summary

We have examined a system which can produce multiple
outputs each of which can be of many different qualities. We
presented a method of modelling such system as a function of
the state of each of its components, and, when that state is
known only as a probability distribution, we have shown how
to determine the probability distribution of the measure of the
system’s effectiveness. It was shown that the exact computa-
tion of this distribution could be an impossible task and that
therefore it may be attractive to have available upper and
lower bounds whose computation is easier to carry out.
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